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Abstract. The paper deals with the implementation of the chosen fatigue damage
criterions into FE analysis. Our study considers a shell finite element structural
analysis in conjunction with the multiaxial rainflow counting and the fatigue damage
prediction. The computational analysis considers stochastic response under random
excitation in time domain and damage calculation based on so called critical plane
approach (CPA).
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1 Introduction

Fatigue damage of structural features is a complex physical process which is governed by
a great number of parameters related to, for example, local geometry and material
properties of the structural region surrounding the crack growth path. There are different
approaches and methods which can be used in fatigue life predictions [1].

It is commonly recognized that it is impossible for a physical model to account for all
fatigue influencing parameters, thus a lot of approximate models have been conceived for
practical fatigue assessments. In every stadium of fatigue damage cumulation dominates
a definite mechanism controlled by more or less known and verified rules. There exists the
stage of microplastic process in total volume of material with following stage of fatigue
crack nucleation and stage of their growing with more or less detailed zoning. Despite of
this research no results have been achieved, which could be considered as successful ones.
This applies mainly to the cases of random and combined stress, where today’s procedures
used in one axis stress analysis fails [2].

There are plenty of hypotheses used for evaluating a degree of damage caused by
variable load [3-5]. Life prediction methods which presume homogeneous material (free
from cracks, inclusions or defects) at the outset of the investigation can be divided into
strain-based (low-cycle fatigue) and stress-based (high-cycle fatigue) methods. This study
assumes stress-based approaches use the elastic stress range (or amplitude) as the governing
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load parameter. At a sufficient load level, which may result in a fatigue life of
approximately 107 cycles, a threshold referred to as the fatigue or endurance limit can be
seen for many materials.

Research of mechanism and processes of fatigue failure of materials achieves great
advance, however there still doesn’t exist general failure model, which should be applicable
for different conditions of activity. There is needed an integration for such a procedures
into a modern systems of computing aided design (CAD) [6-8] in relationship to methods
of strength computing transferred by finite element method (FEM) [9-11].

2 Thin shell stress calculation

We will consider well-known shell finite elements (Kirchhoff’s or Mindlin’s formulation)
[1, 12]. The stiffness parameters depend on material constants and element geometry,
mainly on its thickness. At first we have to prepare the stress calculation process. This
process is based on the expression of the j-th element membrane forces and bending
moments (without shear forces) [13, 14], i.e.
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The auxiliary matrices I, and I, can be calculated only using the numerical approach.
Further details about E,, E;, D, B,,, B;, u,; and ¢ are presented in [10, 15]. The extreme
stress values can be expected at the top or at the bottom surface. Generally, it means
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Let’s build new material and auxiliary matrices
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where the matrix I is the classical unit matrix. Then (3) can be rewritten as follows
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3 Chosen approaches for multiaxial fatigue damage calculation

Let’s now focus on the cumulative damage counting by using multiaxial rainflow
decomposition of the stress response. It should be noted that the fatigue damage calculation
of the machine parts is generally problematic because the results are considerable changed
in the principal stresses [2, 4, 5]. Using FE analysis we can get six components of the
stress-time function (multiaxial stress) but it is very difficult to obtain an equivalent -
uniaxial load spectrum by reason of comparison with applied computational fatigue curve.
In our case the rainflow analysis for random stresses known in classic uniaxial form as
von Mises or Tresca hypotheses is impossible. It means that the important goal of this part
will be to propose some approaches to estimate the high-cycle fatigue damage for
multiaxial stresses caused by random vibration analysed structure [10, 16, 17]. Generally
we can apply two fundamental approaches for multiaxial rainflow counting:
o C(ritical Plane Approach (CPA) [13], and
o Integral Approach (IA) [10].

It is well-known that the Wohler curve (Fig. 1, sometimes called S-2N curve) is basic
source of getting information of the material fatigue life. Generally the S-2N curve is
statistically evaluating by experimental fatigue curve. This is a graph of the magnitude of
a cyclical nominal stress oy against the logarithmic scale of cycles to failure 2N, It is
advantage to show it in logarithmical or semi logarithmical coordinates.

Stress amplitude, (log scale)

Reversals to failure 2N, (log scale)
Fig. 1. S-2N curve

The o,—2N; relation can be written as follows
o, =0, -n,)", @

where o is the fatigue stress coefficient, 2N, is number of cycles to failure,
b is fatigue strength exponent and oy is stress amplitude to failure.



Some researches the relationship (7) rewrite into following form
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Considering mean stress modified version of the stress amplitude (using Goodman,
Soderberg, Geber), Eq. (8) can be rewritten as follows
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If k=1 and Rp= Ry (yield stress) the Soderberg’s model is used, if k=1 and Rp= Ry,
(strength limit) the Goodman’s model is used and if £ = 2 and Ry = R, the Geber’s model is
used. Using the linear Palmgren-Miner law we can calculate fatigue damage for stress
amplitude oy; as follows
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Findley hypothesis

Findley has assumed the critical plane as a plane with maximum shear stress, i.e. the fatigue
equivalent shear stress can be written as follows [10, 18]
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where kis Findley’s factor which value for tough metal can be about 0.3. Using

von Mises relationship between normal and shear stresses and classic plane stress analysis
for top or bottom element surface it is possible rewrite (9) into following form
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The damage calculation can be realised using Eq. (10). Presented relationships have
been applicable for FE analyses. Numerical and experimental tests have confirmed that the
factor k = 0.3 was overstated [4, 13] by author.

Dang Van hypothesis

Dang Van again has assumed the critical plane with shear stress but with difference in
factor k, which can be calculated from normal and shear fatigue limit, i.e.
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where 7¢ is shear (torsional) fatigue limit, oc¢ is normal (axial) fatigue limit, oy, o, o3
are principal stresses. Relationship (11) is possible to use like that
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Using by application of the shell stress theory and Egs. 6a,b we can obtain
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Relations (12) and (17) present equivalent stresses applicable for rainflow
decomposition for both proportional and non-proportional loading. The cumulative damage
calculation can be realised using Eq. (10) again.
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HMH modified hypothesis

Applying von Mises equivalent stress for CPA we can obtain following relationship
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or in detail
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In this case it should be noted that computational approach depends on a searching
process of a critical plane normal vector ncpy. By reason rainflow analysis itis very
important to know the sign of the calculated equivalent stress therefore the sign of this
stress will be defined by sign of normal component. For searching process was used
optimizing tools in Matlab [7] and optimizing problem for cumulative damage function is
usually formulated as follows
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for unknown vector ncp, and stresses on bottom surface. The same computational
process we can have to realise on top element surface.

Damage calculation using IA

The fundamental idea is to count rainflow cycles on all linear combinations of the stress
random vector components [10], i.e.

O-AiMRF(t):

22
=q 'O'X(l‘)+Cz ~O'y(t)+c3 -O'Z(t)+c4 -z'xy(t)+c5 ~z'yz(z‘)+c6 ‘T, (t) 22)

on the assumption that the parameters c¢; belong to a hypersphere ZC,Z =1. Practically
i=1
if the stress state is biaxial (e.g. thin shell finite element) the stress components can be
written under the form of three dimension vector 6 = [¢;, o;, rxy]T and the equivalent stress
will be calculated as follows
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on condition that ¢; +¢2 +c; =1. In the case of shell element we can obtain again
following relationships
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Hence the next goal will be to find extreme value of the estimated damage for vector ¢
and i-th element, i.e.
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where D, yrr 18 the maximum value of the cumulative damage for i-th element, 2N, is
the number of cycles to failure, mc is the number of cycles after rain-flow decomposition of
the stress. Naturally we have to observe the normality condition for ¢ using following
transformation

(26)

4 Testing example

Let’s solve fatigue damage of the model of ribbed beam as a shell construction created in
FEA software ADINA (Fig. 3). The real geometry of this component is shown in Fig. 2. On
this model there was analyzed rate of cumulative fatigue damage with help of presented
CPA methods. We considered calculation with the chosen multiaxial criterions which were
applied for 16 identical random loading processes (2000 random values — Figs. 4 and 5):
Dang Van criterion; Findley criterion and Von Mises criterion.
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Fig. 2. Proportions of ribbed beam with wall thickness of 6 mm



Fig. 3. Three-Dimensional model of ribbed beam

The Fig. 3 represents 3D model of ribbed beam and its mesh with detail of loading. We
used the following parameters in finite element model: used material was typical
construction steel with Young's modulus £=2.1-10"" Pa and Poisson number z=0.3.
During the FE meshing it was used thin shell finite elements with four nodes. The model
was excited under two stochastic forces with Gauss distribution. Stochastic character of this
forces we can describe as follows: mean (1) = 12000 N, standard deviation (F1) = 8000 N
at direction of z axis and mean (F2)=5000 N, standard deviation (F2)= 10000 N at
direction of x axis. Time functionality of the forces /1 and F2 are shown in Figs. 4 and 5.
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Fig. 4. Time course function of loading force F1
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Fig. 5. Time course function of loading force F2

Cumulative Damage Calculations

In Table 1 is shown estimate of cumulative fatigue damage for ribbed beam. Graphical

representations of cumulative fatigue damage of analyzed shell structure for three chosen

hypothesis are shown in Fig. 6, Fig. 7 and Fig. 8.

Table 1. Cumulative damage for different multiaxial criterions

Cumulative fatigue damage
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Fig. 6. Distribution of the cumulative fatigue damage using Dang Van criterion
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Fig. 7. Distribution of the cumulative fatigue damage using Findley criterion
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Fig. 8. Distribution of the cumulative fatigue damage using von Mises criterion
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Conclusion

The goal of this study has been to realized an overview and propose of possibilities

iction of modeled shell structure with help of

fe) pred

i

finite element method. There was used a software facili

ADINA software.

of computational fatigue damage (1

interface between MATLAB and



They were also presented and compared different methodology about prediction of
multiaxial fatigue criterions. Our benefit has been in application of the algorithmization
process of the fatigue failure computational prediction in shell finite element models.
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