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Abstract. Euler-Lagrange optimization method is exploited here to develop energy 

saving position control strategy valid for a.c. drives. The optimization principle 

respects copper losses minimization only. Boundary value problem for Euler-

Lagrange equations is solved by Differential transformation method (DTM). 
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1 Introduction  

The consumption of electric motors represents nearly one half (46%) of global electricity 

consumption. Therefore, even small decrease of energy demands of electric drives, can 

result in significant energy savings with subsequent contribution to the protection of the 

environment.  The main contribution of this paper is a mathematical analysis of the energy 

optimal speed and position control of the drives with a permanent magnet synchronous 

motor (PMSM), taking into account stator copper losses. In [1, 2] the optimal mathematical 

trajectory is modified to correspond to the triangular and trapezoidal profiles. This 

procedure is necessary for the technical realization of the near-energy optimal control to 

any controlled drive with PMSM. The mathematical theory of optimization methods may 

be found in [3]. 

If we consider some functional and the fundamental problem: To determine the control 

function u(t) for which 
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The problem of plastic deformation considered due the minimization of total energy in 

[4].  
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The function 0L  describes a minimization problem with the constraints (equations of 

motion for some physical problem, e.g. Newton’s eq. of motion F = ma) 
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and the complete cost functional is defined by the relation 
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where    is a vector of Lagrange multipliers. The solution of the minimizing problem 

requires to find a solution of Euler-Lagrange equations with some boundary conditions 
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By means of Euler-Lagrange equations we can find the optimal control laws for 

electrical drive system.  

Following differential equations describe dynamics of the rotor position  , speed  , 

electrical motor torque    and load torque    
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where Jr  is the reduced moment of an inertia to the shaft PMSM, LS and RS are stator 

phase inductance and resistance respectively,    
  

  
 is a stator time constant. The 

electrical torque of the motor can be expressed as 

         (4) 

where         and   (  )  , p is a number of pol-pairs,     is a linkage flux of 

the permanent magnet and     ( ) is a torque component of the stator current. 

An energy consumption of the control system depends on the minimization of copper 

losses and is given as (see [5]) 
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With regard to (4), we have the relation 
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where    is a manoeuvre time. If we assume that the load torque is a time dependent 

function     ( ), then the complete cost functional (1) has a form (see also (3)) 
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The corresponding Euler-Lagrange equations (2) for the position control are 
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According to (5), we have    
  
 

   
 and     ( ) (the assumption). Finally, from 

Euler-Lagrange equations with constrains (3) follows a boundary value problem (BVP) 
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With conditions 
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(7)  ( )      
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where the manoeuvre time    and the demanded position      are given. 

2 DTM – Differential transformation method 

We give a brief overview of Differential transformation method that proposes a technique, 

which does not evaluate the derivatives symbolically, the DTM of the n-th derivative of a 

function  ( ) is defined by 

 ( )  
 

  
[
   ( )

   
]
    

  

where  ( ) is an original and  ( ) is a transformed function. 

An inverse transformation of  ( ) leads to  

 ( )  ∑ ( )(    )
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and if we consider      then the representation of the function reduces to 

 ( )  ∑ ( )  
 

   

   

The properties of the DTM with their proofs are published in [6, 7], the used ones of 

them are introduced below. 

Let functions     , for           be differential transformations of functions     , 
for          , then the following correspondences hold 
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where      is the Kronecker delta symbol,           
 . 

3 The BVP solution using DTM method 

The standard using of the DTM transform is given for initial value problems and the 

solution has a form (8). In the next, we derive an approximate solution of the BVP problem 

(6), (7) by using some properties of DTM method. So, we have   
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In praxis, the manoeuvre time       and we consider the approximate solution in the 

form, i.e. the polynomials of the third degree  
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Technically, from (9) we have 12 linear equations (n = 0,1,2) for 16 unknown 

coefficients   ( ),           and          . The other four linear equations we get from 

the boundary conditions (7), i.e. 
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4 Numerical results 

The parameters of the numerical calculation are:        ,         , the moment of 

inertia             
 , the prescribed manoeuvre time and the demanded position are 

       ,        . We assume two cases of the load torque    

constant 

       

exponential 

      
     

The corresponding energy optimal solutions for these particular problems are 

for        

 ( )                        
 ( )                       

 

and for       
   

 ( )                                 
 ( )                       

 

Results for energy optimal control of the drive speed and the drive position in the case 

of the constant load torque       are shown in Figure 1 (respectively for the exponential 

load torque       
   in Figure 2) 

 

Fig. 1.  Energy optimal control of the drive speed and the drive position in the case of the constant 

load torque      (speed  ( ) – blue line, position  ( ) dash-dot line).  
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Fig. 2. Energy optimal control of the drive speed and the drive position in the case of the exponential 

load torque       
   (speed  ( ) - blue line, position  ( ) - green dash-dot line). 

Conclusion 

In this paper the Differential transformation method is used to solve linear system of 

differential equations derived for optimal speed and position control of the drives with a 

permanent magnet synchronous motor (PMSM), taking into account stator copper losses. 

This problem needs to solve Euler-Lagrange equations with some constraints and boundary 

value conditions. The different types of load torques are considered, namely the constant 

and exponential load torques. The approximate solutions of BVP are given in the form of 

series with required accuracy, some numerical examples are provided. 
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