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Abstract. The objects of this studies are the stability and transversal vibrations of the 

system composed of three segments, where in the centre part of the system two 

piezoelectric patches are perfectly bonded to the top and bottom surface of the host 

beam. The system is kinematically loaded as a result of prescribed displacement of 

one or both end supports. For the analysis purposes three different beam end supports 

have been taken into consideration, which prevent longitudinal displacements i.e. 

clamped-clamped, clamped-pinned and pinned-pinned. This type of beam loading not 

only affect its natural vibration frequencies but also the system’s stability. By 

introducing the electric field to the piezo patches, depending on its vector direction, 

in-plane stretching or compressive residual force may be induced. Presented results 

show that piezo actuation can significantly modify both the critical buckling force and 

the vibration frequency. 
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1 Introduction  

Rapid technological and research development have a crucial effect on mechanical 

properties of newly produced materials, allowing thereby application of beams and columns 

with higher slenderness at comparable level of buckling capacity. From the mechanical 

point of view, in case of slender systems the examination of only stability criterion is 

insufficient, thus additional element failure due to the vibrations should have been studied. 

It is well known that elements exposed to significant vibrations should be protected from 

the resonance phenomenon. There are variety of ways to modify fundamental systems 

stability and vibrations in order to prevent the resonance such as bonding another material 

to the host beam/column, changing the type of support or supports, adding another 

supporting point etc. In this paper additional material bonding method to a host beam is 

presented, applying piezoelectric patches, which are also called in literature as “smart 

materials”. These materials allow not only change the beam/column structural parameters 

as axial and bending stiffness, which result in increased buckling capacity, but may be also 

used as passive modification of system vibrations frequency and furtherly the buckling 

capacity via the piezo actuation. Piezo actuation is the reverse piezoelectric effect, where 

electric field is applied to the material in order to change its dimensions. According to 
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above additional pretension axial force can be generated in a beam/column, affecting its 

stability and vibrations. 

 Passive and active buckling enhancement and vibrations control were the subject of 

interest by many researchers. Different analytical models concerning extension, bending 

and shear deformations induced via strain actuators bonded and embedded in one-

dimensional structures, specific characteristics and implications of piezo actuators practical 

use were discussed in [1]. Experimental investigation of active buckling control and 

theoretical discussion of the pin-ended composite carbon-epoxy column were performed by 

Thompson and Loughan [2]. It was showed that imperfections and geometrical nature 

significantly affect the system’s critical buckling load. Ultimate load was significantly 

lower than the critical buckling load determined for the ideal column. Via the active control 

the out of plane deflection could be completely removed, restoring the column behaviour 

under compression. Despite the fact that the ultimate load was increased, its value was still 

lower than the critical buckling load determined for the ideal column. Different 

experimental studies in order to obtain optimum thickness of piezoelectric element for 

cantilever column were presented in [3]. Faria proposed another way of enhancing the 

buckling capacity of composite columns [4]. Author presented that stress stiffening effect 

have significant effect when both column ends have longitudinal displacements fixed. On 

the basis of above statement in-plane axial residual force is generated, which counteract the 

effects of a compressive force resulting from prescribed support displacement. Thus, 

fundamental beam buckling resistance may be considerably altered. Broader literature 

overview and mathematical models concerning buckling of structural members may be 

found in [5]. 

 Two significant papers concerning the effect of piezo actuation on static and dynamic 

behaviour of the beams were elaborated by Faria [4] and Zehetner with Irschik [6].  

Faria [4] demonstrated that determination of buckling in composite beams composed of a 

host beam and bonded piezoelectric patches with the use of pin-force model should have 

been used with extreme caution. Despite that pin-force model may be used to correctly 

predict the stress stiffening effect. Zehetner and Irschik [6] had also announced that 

assumptions taken by other authors concerning inextensible beam axis, the absence of 

longitudinal displacement under applied load and piezoelectric axial actuation were 

inadmissible and led to incorrect conclusions. Static and dynamic behaviour of multilayer 

beams with piezoelectric bending actuators were extensively discussed in [7]. Free 

vibration eigenvalue problem of thin composite plates was the subject of interest of 

Hernandes et al. [8], who formulated the problem with finite element method on the basis 

of Reissner–Mindlin theory including non-linear strain–displacement relations. It was 

shown that the stress stiffening effect depends on several factors i.e. material properties, 

placement of piezo actuators, boundary conditions and model geometry. Moreover, via the 

numerical analysis the effect of in-plane stress on free vibrations even in unconstrained 

plates was revealed. Vibrations control in composite plates were also discussed in [9-11]. 

Piezoelectric actuation influence on the flexural vibrations of sandwich beam was discussed 

in [12]. It was stated that the arrangement of piezoelectric material on the host beam have 

significant influence on the dynamics characteristics of studied system. Additionally, the 

relationship between mode shape distribution of the electric potential in the piezoelectric 

layer in the longitudinal direction and beam curvature, which depends on adopted boundary 

conditions was presented.  

 The main purpose of this work is to investigate the influence of piezoelectric actuation 

in stepped beam on buckling critical load and linear frequency. System’s inhomogeneity 

results from a pair piezoelectric patches, perfectly bonded to the host beam on its top and 

bottom surface. Three different beam ends that support, eliminating longitudinal 

displacements are taken into considerations. In the system load is applied as a prescribed 



displacement of one of the beam end support. This type of loading can be also represented 

with temperature field applied to the beam structure, which with both ends fixed in 

longitudinal direction result in axial internal force occurrence. In order to enhance buckling 

and alter the linear vibrations in-plane axial compressive or tensile piezo force is induced, 

depending on the electric field vector. 

2 Problem formulation 

The analysed scheme composed of a host beam with both ends pinned and two 

piezoelectric patches mounted on beam’s top and bottom surface is presented in Fig. 1.  

 

 

Fig. 1. Scheme of the pinned-pinned beam with two piezoelectric patches symmetrically bonded in 

the middle segment (a), cross section of the analysed beam (b). 

In the study three different beam end supports preventing longitudinal displacements are 

taken into considerations: both ends clamped, both ends pinned and clamped-pinned. 

Presented in Fig. 1b cross-section of the beam have following dimensions i.e. exactly the 

same width of the host beam and piezo patches equal 20 mm, beam height equal 3 mm and 

each piezo layer equal 0.5 mm, respectively. It is assumed that piezo elements are perfectly 

bonded to the beam at the entire length, and adhesive layer thickness have insignificant 

influence on obtained results. Piezosegment located in the system divides beam 

symmetrically i.e. first and third segment have same length value. Beam is made of 

homogeneous, elastic isotropic aluminium material, whereas for the piezo patches 

homogeneous, elastic, transversely isotropic P41 material is assumed. On the basis of 

manufacturer [13] piezo elements Young’s modulus is Ep = 83.33 GPa, density  = 7450 

kg/m
3
, whereas beam Young’s modulus is assumed as 70 GPa and density  = 2700 kg/m

3
, 

respectively. In the system presented in Fig. 1a, load is applied via the prescribed one of the 

supports displacement and before the load application the beam is assumed to be rectilinear. 

Electric field applied to the piezo patches is exactly the same for the top and bottom one. 

Thus in-plane axial compressive or tensile piezo force can be induced. On the basis of 

derivation of residual force equation along the stepped beam with n-pairs of piezoelectric 

actuators presented in [14] for three segmented system one obtains: 
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where: F = -2be31V is the piezoelectric force, which depends on piezoceramic patches 

width b, e31 constant describing piezo material and the applied voltage V,  denotes the 



relation of the piezosegment axial stiffness to that of the beam, L is the overall beam length 

and L2 is the length of piezosegment. 

 The non-dimensional governing equation for i-th segment beam with the residual force 

term for stability and vibrations problem can be expressed as: 

 stability problem 
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 vibrations frequency 
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where the dimensionless parameters are defined through substitutions: 
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For the substitutions following notation is introduced: wi denotes the transversal 

displacement, t – time, EpJp, EbJb – piezo element and beam bending stiffness, respectively, 

p, b – densities of the actuators and beam, respectively, Ap, Ab – the cross section area of 

piezopatches and beam, respectively,  - natural vibration frequency. 

 Non-dimensional boundary conditions necessary to obtain the solution of stability and 

transversal vibrations problem for all analysed schemes are expressed as: 

 clamped-clamped system 

         0,,,,
0

33033
0

11011
1311


 

 II wwww  (41) 

 clamped-pinned 
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 pinned-pinned system 
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where: I and II are the Roman numerals denoting the order of the derivative with respect 

to the space variable ξ. 

 Continuity boundary conditions which describe the equality of transverse 

displacements, slopes, bending moments and shear forces between segments are: 
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3 Approximate solutions 

3.1 Stability problem 

By separating space and time variable with the following formula: 

      cos, iiii ww   (5) 

which is introduced to the equations (21) one obtains: 
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The general solution of equation (6), can be demonstrated as follows: 
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By substituting equation (7) into the adequate set of boundary conditions (41 – 46) one 

obtains a system of twelve homogeneous linear equations with respect to unknown 

integration constants Ai, Bi, Ci, Di where i=1, 2, 3. Equating to zero the determinant of 

matrix coefficients of that system one derives a transcendental equation from which the set 

of successive critical loads can be numerically determined. Each of the buckling modes can 

be obtained after introduction of a particular eigenvalue into the normalized eigenfunction 

expressed by equation (7). 

3.2 Vibrations frequency 

Introducing into the governing equation of motion (22) the separation of time and space 

variable formula (5), one obtains: 
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The general solution takes the form: 
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where coefficients 1 and 2 are expressed as: 
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 in case of stretching force 02 p : 
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Once again substituting equation (9) into the adequate set of boundary conditions (41 – 

46) twelve homogeneous linear equations with respect to unknown integration constants Ai, 

Bi, Ci, Di where i=1, 2, 3 are obtained. Equating the matrix of the coefficients standing 

within the unknown integration constants to zero, the solution describing successive natural 

frequencies is determined. 

4 Numerical results and discussion 

In this chapter particular attention has been dedicated to the buckling enhancement and 

vibration control depending on the piezosegment length and the electric field vector 

direction. The piezosegment length in the range of l2  (0; 1) has been investigated. The 

influence of piezosegment placement and other physical and structural parameters on 

buckling and natural vibration frequency is presented in [15,16]. Knowing that both ends of 

the beam are constrained against longitudinal displacement, axial tensile or compressive 

force can be introduced to the system via piezo patches. Thus piezoelectric force parameter 

f have been assumed to be equal the pinned-pinned beam critical buckling load parameter: 
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It is worth noting that the residual force (1) can be equal to piezoelectric force only in 

case, if the piezoceramic actuators covers the entire beam length and axial stiffness of the 

host beam and actuators is exactly the same, in other cases fr < f.  

However, all numerical results are going to be presented in non-dimensional form, an 

analysis of practical model should also be demonstrated. Beam with length of 

L = 400 [mm] is assumed in order to verify necessary voltage to generate the piezoelectric 

force. On the basis of the P-41 material and properties provided by the manufacturer [13], a 

piezoelectric constant of value d31 = 6.6510
-11

 [C/N] has been adopted. The critical 

buckling load for the pinned-pinned beam on the basis of equation (9) is equal to 194.31 

[N], hence an individual piezoceramic actuator should generate a force equal to 97.16 [N]. 

On the basis of above, necessary value of the applied electric field should reach the value of 

582.95 [V], which is far beyond the piezoceramics depolarisation point equal 1000 [V]. 

Hence, assumed piezoelectric force can be safely treated as a tool for enhancing buckling 

and alter the natural vibration frequency. 

 

 



4.1 Buckling enhancement 

In Figs. 2a-2d enhancement ranges of critical buckling force for the clamped-clamped, 

clamped-pinned and pinned-pinned beam have been presented. In Figs. 2a-2c with the solid 

line type critical buckling load in the function of piezosegment length without piezo 

actuation f = 0 is presented. With the dashed line tensile piezoelectric force influence on 

buckling is presented, whereas with dash-dot line compressive piezo force, respectively. In 

the Fig. 2d percentage enhancement of buckling load in the function of piezosegment 

length is shown. 

a) b) 

  
c) d) 

 
 

Fig. 2. Modification range of the critical buckling load for different piezosegment length,  

(a) clamped-clamped beam, (b) clamped-pinned beam, (c) pinned-pinned beam, (d) percentage range 

of critical buckling load enhancement via axial tensile residual force for different beam ends supports 

Comparing results presented in Figs. 2a-2c one can state that regardless of beam ends 

supports, for systems without piezo actuation, critical buckling load increases together with 

increased length of the piezosegment. In all discussed systems, the tensile piezoelectric 

force result in buckling load increase, whereas compressive piezo force acts in opposite 

way. It is worth noting that for the beam with both ends clamped, the highest percentage 

influence of piezoelectric actuation (see Fig. 2d) is obtained in case of piezosegment length 

l2 = 0.88 and is equal 5.23%. Further increase of piezosegment length in discussed beam 



results in decreased effectiveness. For the beam where supporting ends are assumed pinned-

pinned (Fig. 2b) and clamped-pinned (Fig. 2c) together with increased piezosegment 

length, buckling load is increased. It should be noted that the lower rotation stiffness 

provided by the adopted supports in the system, the stronger effect of the induced axial 

residual force and wider range of possible buckling force modification is obtained (see Fig. 

2d) 

4.2 Vibrations control 

In Figs. 3a-3c non-dimensional natural vibrations frequency is shown for the system with 

following ends supports: clamped-clamped, clamped-pinned, pinned-pinned, respectively. 

Once again with solid line system without piezo actuation is presented, dashed line denotes 

the compressive piezo force, whereas dash-dot line corresponds to the system with tensile 

axial piezo force induced. In Figs. 4a-4b percentage modification of natural system 

frequency for compressive and tensile piezoelectric force is shown for all analysed systems. 

a) b) 

  
c) d) 

 
 

Fig. 3. The first natural frequency in the function of piezosegment length and different values of 

piezoelectric force induced, (a) clamped-clamped beam, (b) clamped-pinned beam, (c) pinned-pinned 

beam, (d) percentage range of natural system’s frequency modification via piezo actuation for 

different beam ends supports 



Considering numerical results presented in Fig. 3a-3c one can state that axial tensile 

piezoelectric force increases the first natural vibration frequency of each system, whereas 

compressive piezo force diminishes that frequency, respectively. It should be noted that 

natural frequency curves changes irregularly regardless of system supporting. The reason of 

that behaviour are: the relation of piezosegment axial stiffness to the host beam stiffness, 

piezo patches bending stiffness to the beam stiffness and mass distribution per unit length. 

For the clamped-clamped (Fig. 3a) and clamped-pinned (Fig. 3b) system at small values of 

piezosegment length, decrease of first natural frequency can be observed, furtherly it starts 

to increase. Independently of the piezoelectric force value for the clamped-clamped beam 

(Fig 3a) rapid increase of the first natural frequency can be observed. Similar behaviour 

may be observed in the clamped-pinned beam (Fig. 3b) in case of piezo patches length 

greater than 0.85 entire beam length. On the basis of presented curves in Fig. 3d, again one 

can state that the widest range of possible first natural frequency modification with the axial 

tensile and compressive residual force is obtained for the pinned-pinned beam, whereas the 

narrowest range for clamped-clamped system is obtained, respectively.  

Conclusion 

In this study the problem of buckling enhancement and alteration of first natural frequency 

via the piezo actuation for the system with various type of ends supports preventing 

longitudinal displacement have been discussed. The priority parameters concerned the 

support conditions, geometrical parameters and the piezoelectric actuation.  

Regardless of the beam ends supporting induce of the axial tensile residual force 

counteracts the external loading, significantly enhancing the critical buckling force. 

Moreover, same piezoelectric force results in increased first natural vibration frequency in 

any analysed system in regard to that system without piezo actuation. Compressive force 

acts in the opposite manner. Additionally, one can be observed that the lower system’s 

supports rotational resistance the wider range of possible system’s buckling and vibrations 

control is obtained. It is worth noting that the range of possible critical load or natural 

vibration frequency control depends strongly on piezo patches geometry, relation of piezo 

axial and bending stiffness to the host beam and maximum allowable voltage avoiding the 

risk of piezo elements depolarisation. Presented numerical results concern only one of 

many possible configurations of the system, thus additional research and experimental tests 

should be provided continuing this study. 
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