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Abstract. In the paper, we present the results of solidification simulation taking into 

account the movement of the liquid phase. The results are obtained from an author 

software which is implemented on the base of a stabilized finite elements method 

(Petrov-Galerkin formulation). Using that formulation the Navier-Stokes equation is 

solved together with the convection term (Boussinesq approximation). The Finite 

Element Method (FEM) formulation is responsible for solidification, approximating 

the solution of the heat conduction equation (with the internal heat source term 

responsible for the heat released during the phase transition). The movement of the 

liquid phase in a solidifying cast that is caused by convection can significantly affect 

the process of heat transfer from the casting to the mold, which in turn has an 

influence on the temperature distribution in the cast and may cause a change in the 

location of the defects. The presented results allow to assess under what conditions 

the effect of convection on the solidification process is significant. 
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1 Introduction  

Solidification is still one of the most difficult process for modelling. Many physical 

processes that takes place from micro scale up to macro adds present significant difficulties, 

when someone tries to prepare suitable computational model. During years, many 

researchers came with models, that could give reasonable results [1, 2]. 

However, many models had some simplifications and limits. Example of such limit was 

omitting forces of convection in liquid metal. This can lead to significant differences 

between temperature map from simulation and temperatures observed in real casting. 

Additional problem is that without convection it is impossible to model such things like 

distribution of species in casting or solidification shrinkage, which are important factors of 

castings quality [3]. 

However, increasing complexity of models, present problem in their implementation. 

Nowadays, complex models must be implemented with use of technologies like parallel 

computers [4], accelerated architectures like GPU [5], or using special organization of 

calculations [6]. 
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2 Mathematical model 

The governing equation for modelling solidification process is based on heat transfer 

equation with source term: 

   ̇    (   )        ̇,     (1) 

where ρ is density [kg/m
3
], c is specific heat [J/(kg K)], T is temperature [K], u is 

velocity from convection force [m/s], λ is thermal conductivity [W/(m K)] and q is heat 

source connected with heat of solidification [J/m
3
]. 

Boundary conditions, that are used in model with equation (1) are the Newton boundary 

condition on external sides of mold and contact condition for heat exchange between 

casting and mold. 

With use of the apparent heat capacity formulation it is possible to obtain following 

form of equation (1): 
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where c
* 

is the approximation of the effective heat capacity. There are various methods 

for obtaining this approximation. Here, the Morgan method is used: 
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where H is enthalpy [J] and t in upper script is time level. 

Liquid metal in this model is assumed to be Newtonian fluid. This allows to write 

Navier-Stokes set of equations as: 
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where p is pressure [Pa], μ is viscosity [kg/(m s)], fl is liquid fraction [-] and Kε is the 

permeability of the mushy zone [m]. 

This equation needs to be accompanied by appropriate set of initial and boundary 

conditions. Initial u is set as initial condition and between mold and casting the no-slip 

condition is used. 

The right hand side part of equation (4) describes body forces that arose in liquid. The 

first part is connected with buoyance force that is approximated by Boussinesq formula: 

     (    )       (6) 

where β is expansion coefficient [1/K], g is gravitational acceleration [m/s
2
], T0 is 

reference temperature [K], which in this case was temperature from initial conditions. 

The last part of left hand side of equation (4) is drag force that appears in mushy zone 

from interaction between liquid and already solidified metal. This model assumes that  

solidified part is immovable [7]. The permeability of the mushy zone is approximated by 

the Kozeny-Carman equation: 
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where K0  is secondary dendrite arm spacing [m] and fl is liquid fraction [-]. 

Liquid fraction and solid fraction are connected with simple relation: 

        ,       (8) 



where value of fs is taken from phase equilibrium graph relationship: 
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where TL is liquidus temperature [K], TM is solidification temperature of pure 

component [K] and k is solute partition coefficient [-]. 

Equations (1), (4) and (5) are discretized using Finite Element Method, which leads to 

following set of equations: 
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where superscript S is used to set apart matrices used in solidification equation and T, u, 

p are vectors of unknown temperature, velocity and pressure. Elements of matrices M
s
, M, 

N
s
, N, K

s
, K, G

T
, G and D can be calculated from the following formulas: 
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where α, β are indices of single element matrix, a and b have range up to number of 

nodes in element, i, j, k have range up to number of dimensions, S are shape functions of 

finite elements and δ is Kronecker delta. 

Equations in this form can be solved with carefully selected finite elements [8]. In this 

work, approach that uses stabilized Finite Element is used [9], which allows to avoid limits 

imposed by the Ladyzhenskaya-Babuska-Breezi condition. 

Special care is needed for treating drag force part in stabilization [10]. This work uses 

approach, that determines values of stabilization coefficient not only by velocity of liquid, 

but also limits them proportionally to volume of liquid fraction. 

In calculations, it is assumed that small time step is used, hence in determination of 

actual values of material properties, when temperature was needed, temperature from 



previous time step was used. This strategy allows to treat solidification equation as linear 

and even solve it independently from Navier-Stokes equations, which gives better overall 

performance [11]. Moreover, such approach makes possible to use lumped mass matrix in 

solidification equation [11, 12]. 

With those assumptions in mind and using theta scheme for time integration, the final 

form of equations solved in the model is: 
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where matrices with SUPG and PSPG are terms supplied by stabilization, Δt is time 

step and θ is parameter determining type of time integration scheme (0 for Euler Backward 

and 0.5 for Cranck-Nicolson). 

This model uses Newton-Raphson approach for linearization of Navier-Stokes 

equations. 

3 Simulations 

Model described in section 2 was implemented as an in-house C++ program. This program 

uses TalyFEM [13] and PETSc [14] libraries. TalyFEM library implements finite element 

formulas like calculations of shape functions or Gauss quadrature. PETSc library is used for 

linear algebra operations. 

The results for two cases are presented. All simulations use linear triangle finite 

elements. First is small casting (square shape with 0.05 [m] side length), the second is 

larger one (0.5 [m] side length), see Fig. 1. Those two cases allow to asses importance of 

convection in solidification. 

 

Fig. 1. View of domain shape used in simulations 



The boundary conditions utilized following parameters: Newton boundary condition on 

all sides of mold had the environment temperature equal to 300 [K] and heat exchange 

coefficient was equal to 10 [W/(m K)]. Continuity condition assumed value of 

1000 [W/(m K)] for heat transfer through separation layer. 

The material properties are summarised in Table 1 (for casting) and Table 2 (for mold).  

Table 1. Material properties for casting 

Quantity name Unit Value 

Density ρs kg/m3 2824 

Density ρl kg/m3 2498 

Specific heat cs J/(kg K) 1077 

Specific heat cl J/(kg K) 1275 

Thermal conductivity λs W/(m K) 262 

Thermal conductivity λl W/(m K) 104 

Solidus temperature Ts K 853 

Liquidus temperature Tl K 926 

Solidification temperature of pure 

component TM 

K 933 

Eutectic temperature TE K 821 

Heat of solidification L J/kg 390000 

Solute partition coefficient k - 0.125 

Viscosity μ kg/(m s) 0.004 

Expansion coefficient β 1/K 0.0001 

Secondary dendrite arm spacing K0 m 1.4*10-11 

 

Table 2. Material properties for mold 

Quantity name Unit Value 

Density ρs kg/m3 7500 

Specific heat cs J/(kg K) 620 

Thermal conductivity λs W/(m K) 40 
 

The first series of results present temperature map in four time moments (12.5 [s], 

25.0 [s], 37.5 [s], 50.0 [s]) for small square. It is presented in Fig. 2. The effect of 

convection is only slightly visible in the beginning of simulation. With increasing time, 

effects of convection are less visible. However, in time moment 50 [s], location of hot spot 

can be viewed as minimally moved toward top. In this case symmetry of results is easily 

observable. 

Corresponding pressure and velocity map is presented in Fig. 3. The pressure is 

presented as colour map, while velocity is presented as black vectors. Their size and density 

corresponds to the magnitude of velocity. The main observation here is that even in places 

with mushy zone there are no visible fluctuations of pressure, which shows effectiveness of 

used stabilization technique. After 25 [s] there is almost no liquid phase movement. 

In larger case the effect of convection is better visible. It can be observed as fluctuations 

of temperatures presented in Fig. 4. In Fig. 5, we can see that during whole simulation time, 

liquid metal had nonzero velocity. 

 



 

 

Fig. 3. Pressure with velocity vectors in different time moments (12.5 [s], 25.0 [s], 37.5 [s], 50.0 [s] - 

starting from upper left corner). Size of single side of casting is 0.05 [m] 

More detailed comparison can be done with help of plots presented in Fig. 6 and Fig. 7, 

where also results from case without convection are used. Fig. 6 presents cooling curves 

taken in different places of casting (in centre, top, bottom and close to right wall). When 

there is no convection, curves from bottom, top and right spot are the same. However, with 

convection, it can be easily seen, that bottom cools faster then top spot. 

Fig. 7 shows results of the same analysis, but for the large case. Here differences are 

even more visible. Without convection, the results from places close to walls are the same. 

Fig. 2. Temperature in different time moments (12.5 [s], 25.0 [s], 37.5 [s], 50.0 [s] - starting from 

upper left corner). Size of single side of casting is 0.05 [m] 



 

Fig. 4. Temperature in different time moments (12.5 [s], 25.0 [s], 37.5 [s], 50.0 [s] - starting from 

upper left corner). Size of single side of casting is 0.5 [m] 

 

 

Fig. 5. Pressure with velocity vectors in different time moments (12.5 [s], 25.0 [s], 37.5 [s], 50.0 [s] - 

starting from upper left corner). Size of single side of casting is 0.5 [m] 

 



 

Fig. 6. Cooling curves for the small case obtained in different places of casting. As a comparison, 

cooling curves, for cases without convection are also plotted 

 

 

Fig. 7. Cooling curves for the large case obtained in different places of casting. As a comparison, 

cooling curves, for cases without convection are also plotted 

Conclusion 

Presented work tackles with problem of convection in solidification simulations. It presents 

development of model and difficulties linked with presence of momentum and continuity 

equations. It shows study of conditions when convection can be a significant factor. It also 

presents comparison with model that does not take into account this phenomena. Presented 

results shows that even for small casting convection can affect results in comparison with  

immovable liquid state. 



Plans for future work include experimental comparison of results, because presented 

model was only checked against benchmark problems so far. 
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